skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bottenberg, H Carrie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Geologic, geomorphic, and climatic factors have been hypothesized to influence where streams dry, but hydrologists struggle to explain the temporal drivers of drying. Few hydrologists have isolated the role that vegetation plays in controlling the timing and location of stream drying in headwater streams. We present a distributed, fine-scale water balance through the seasonal recession and onset of stream drying by combining spatiotemporal observations and modeling of flow presence/absence, evapotranspiration, and groundwater inputs. Surface flow presence/absence was collected at fine spatial (~80 m) and temporal (15-min) scales at 25 locations in a headwater stream in southwestern Idaho, USA. Evapotranspiration losses were modeled at the same locations using the Simultaneous Heat and Water (SHAW) model. Groundwater inputs were estimated at four of the locations using a mixing model approach. In addition, we compared high-frequency, fine-resolution riparian normalized vegetation difference index (NDVI) with stream flow status. We found that the stream wetted and dried on a daily basis before seasonally drying, and daily drying occurred when evapotranspiration outputs exceeded groundwater inputs, typically during the hours of peak evapotranspiration. Riparian NDVI decreased when the stream dried, with a ~2-week lag between stream drying and response. Stream diel drying cycles reflect the groundwater and evapotranspiration balance, and riparian NDVI may improve stream drying predictions for groundwater-supported headwater streams. 
    more » « less